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Abstract. The Hamiltonian formalism for a two-dimensional system of ODE possessing 
an invariant of the motion not containing the time explicitly has suggested a method for 
the search of first integrals. Applied to the quadratic system it leads to the finding of two 
phase space configurations. 

1. Introduction 

In recent years, much effort has been devoted to obtaining first integrals (invariants of 
the motion) for Hamiltonian and dynamical systems. The reason is that obtaining 
invariants corresponds to a partial integration and is interesting both from an 
analytical and numerical point of view. In this last point of view, obtaining one 
invariant is equivalent to reducing by one unit the dimension of the phase space. Since 
in nonlinear problems we are usually interested in a full exploration of initial 
conditions, any reduction of the dimension corresponds to a dramatic saving of 
numerical computation. Moreover, the existence of invariants provides, in complex 
problems, a welcomed check of the numerical scheme with respect to its accuracy and 
stability. In some cases [l], the knowledge of an invariant leads to the complete 
integration. 

The problems treated here are those on population evolution (in biology, ecology 
and chemistry). A popular model investigated by many people-including the authors 
[2]-is the Lotka-Volterra (LV) one. Its generalization is the quadratic system (QS) 

used mostly in chemistry. For some QS we know particular invariants (see the work of 
Frommer [3] and Lunkevich and Sibirskii [4]). 

Getting an invariant is not an easy task. Even if we consider only simple systems 
like LV or OS, general methods like that of Painlevt give only relations between the 
parameters of the equations but these relations are neither necessary nor sufficient in 
all cases and, moreover, no information is obtained on the form of the invariant. Up 
to now the most useful and practical method has been to assume a certain form for the 
invariant. Then, introducing the dynamical equations, we obtain an expression for the 
total derivative of the invariant. For simple systems this takes the form of a 
polynomial and subsequently all the coefficients of this polynomial are set to zero. 
Unfortunately, we have usually more equations than unkonwns (parameters of the 
invariant), and, thus, constraints, i.e. relations among the parameters of the equations 
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must be introduced. The rule of the game is to have as few constraints as possible and 
consequently to take a form for the invariant as general as possible. For example the 
authors have managed to enlarge the set of known invariants for the LV system by 
taking an expression for the invariant I of the form (for a ZD system) 

where P i s  a polynomial. The introduction of a anda allowed us to reduce the number 
of constraints to one. Obtaining this constraint a, b, and the polynomial P led to a set 
of linear algebraic systems and can be viewed as a generalization of the Carleman 
method. Unfortunately, the technique fails in the case of the QS since the relation 
a=P=O is enforced. 

An alternative to the above method is to assume a given form for the invariant 
and, through a rescaling technique, obtain the Hamiltonian and the general form of 
the equations which possess this kind of invariant. The resulting system of algebraic 
equations is now nonlinear but solutions seem possible. 

I =  xaypP(x, y )  exp st (1) 

If we remember that the LV system is a particular case of the QS 

dx 
-=a++ b&+ b , g y  + c l y 2  dt 

where c,=c,=O we could expect to obtain three constraints for the as. A remark 
should be made about the form of the linear part of (2): we choose to diagonalize the 
linear part and consequently al and a, are just the eigenvalues of the linear matrix at 
the origin (eventually al and a2 are two complex conjugate numbers). Consequently 
(2) can be considered as the most general form. Here we assume all the equation 
parameters to be real. 

We apply this Hamiltonian method to the QS and the paper is organized as follows: 
in section 2 we quickly introduce the method (given already in 1.51) and we apply it to 
the case of an invariant of the form 

I =  P (x ,  Y )  [Q(x,~)l". (3) 
Since we will select for P a  second-degree polynomial and for Q a first-degree one, we 
see that the case ,U = 1 must correspond to the third-degree polynomial type invariant 
obtained by Frommer [3]. Moreover, we consider in this section invariants of 
exponential type and show that they belong to the same family. In section 3 we will try 
an invariant of the form 

I =  P(x,  Y )  IQ(x, y ) Y [ R ( x ,  y)l' (4) 
where P, Q, R are three first-degree polynomials. It appears that (4) is equivalent for 
the QS to the form of invariant (1) given for the LV system. In section 4 we study the 
connection between invariant conditions and the marginal stability condition for 
equilibrium points. This connection is precised through a geometrical interpretation 
of the invariant conditions. Finally we present our conclusions in section 5. 

2. The invariant PQ" 

The method consists in predefining the type of the invariant and then adjusting the 
coefficients (direct method) in order to satisfy the differential equations. It is based on 
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the Hamiltonian formalism of a system of two ordinary differential equations (ODE) 
possessing an invariant, which we recall here. Let 

be a system of two ODE having a time independent invariant. Here the system is taken 
naturally autonomous as the invariant is assumed to be time independent. In previous 
papers (see [l] or [5] )  it was established that (5) can be written in a Hamiltonian form 
using a new time which is function of the phase space position: 

dB = F(x, y) dt. 
Note that this new time is in the same spirit as the one introduced by Hietarinta et a1 
[6]. When a time-independent invariant I(x, y) is known for system (5) then it can be 
written as follows 

d.x aqx,Y) 
d e  ay 

dy ~I(x,Y) 
de  ax 

-=- 

-=-- 

or equivalently in the old time t 

i.e. given a time independent invariant, Z(x, y) and given an arbitrary function F(x,y) 
we can construct the most general two-dimensional ODE system for which Z(x,y) is a 
invariant. We use the property in the other way, in the sense that, assuming a form for 
I(x,y) and given the system of ODE (5 ) ,  we can select F(x,y) and establish the 
algebraic equations to adjust the invariant constants. 

Let us apply the method to the QS defined in (2). To start, consider an invariant of 
the type (3) with the following polynomials 

P(x, y )  = K + h  + By + cx2+ Dxy + Ey2 

Q ( ~ , Y )  = 1 +  BY 
where K, A, B,  C ,  D, E, a and f i  are constants, and apply OUT method. Then 
equations (6) become 

To obtain the two quadratic polynomials (i.e. the LHS of (2)), we must take Fp-' to 
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be a polynomial and the degree of the polynomials taken in (3) indicates that it must 
be simply a constant, i.e. Fe"-*= 1. Then we can construct the following table 

dxldf B+KpB D + a B  2E+SB a D  2Ea+ (2+p)BE 

-dyldt A+@a 2C+aA D+BA (2+p)aC 2CB+ BD+paL 
+ M A  +PBC 01+1IBD 

+paA +paB (P + 1)aD 

coefficient of 1 X Y XZ XY Y2 

From the identification between this table and (2) one readily gets 

A = - @ a  

B = - W  

C =  @(p + 1)az/2 

E = @(p + 1)B2/2 

and the diagonal linear terms (i.e. alx in i and a2y in j )  give 

D -  Kp(p + 1)&= a, = -az (9) 
leading to the first constraint 

a, +a2 = 0. 

Now from the terms with c, and Q one obtains 

a3~p(p++1) (2+p)12=-c2  

~ 3 ~ ( ~ + 1 ) ( 2 + p ) 1 2 = c , .  

D is computed identifying the coefficients of x2 (in dxldf) andy2 (in -dyldt) to b,, and 
-bn respectively 

P + 1  aD+kp2-aaZ@=bll  2 

Finally, from the two last coefficients b12 and b,,, one obtains 

@(P + 1)M2+BD(p + 
@(p + l)a2B+ aD(p + 1) = -bZ1. 

Note that ( l l ) ,  (12) and (13) lead to two additional constraints: 

Moreover given b,,, bz, c1 and Q, one obtainsp through one of the following: 
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b1, + b,i+~j”cc:”==r(cj”~:’~- b , l )  
b ,  + bn + c;”cf”=fi(c:”cy3 - b,) (15) 

which are equivalent through (14). To obtain K let us multiply (9) by a 

aD - Ka2j3p(p + 1) = aal (16) 
but as Ka2D, aD and# are K independent, a is determined from (16), K from (11) and 
consequently all other unknowns from (8) and (9). The results are as follows 

D = Kp(p + 1)uD + al 

E =  KAP + 1lD’ 
2 ‘  

We note that in this problem, the number of equations (twelve) is equal to the sum of 
the number of unknowns (here they are nine, i.e. K, A, B,  C, D, E ,  a, b, p )  and the 
number of constraints (three). Figure 1 is a typical phase portrait which can be 
described as follows. We assume the existence of four real equilibrium points. The 
equations (7) at equilibrium become 

aP a Q  
Q - + p P - = O  

ax ax 

or equivalently 

Thus, at equilibria, either P=O, Q=O or [aP/axaQ/ay-aP/ayaQ/ax]=O. The last 
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-10 0 10 
x 

Figurel. Phase portrait of a PQ” case: a,=-az=l.  b,,=0.25, bt2=-0.8, bZ1=1, 
bn=-0.2, q=-0.008, q=0.015625, 

case leads to (A + Dy + 2Cx)p - ( B  + Dx + 2Ey)a = 0, a h e a r  relation between x and 
y ,  which when substituted into (18) gives the origin and one other equilibrium point. 
The other two equilibrium points are then obtained from the intersection of P=O (a 
conicsection) and Q=O (aline). Since for P=O, I=O, and for Q = O ,  I=Oorinfinity 
(depending on the sign of p), then P = 0 and Q = 0 are trajectories of the system. 

2.1. The Frommer invariant 

The particular case p = 1 corresponds to the Frommer invariant [3]. It is straightfor- 
ward to see that using the results (17) that the invariant expression (3) becomes 

cz CI 

3 I =  a,xy ---x’+ bllx2y - b , x y * + ~ y ’  

with the conditions 

a1 +a2=2b11+ b2,=2b,+ b,=O. 

The two last relations are deduced directly from (15) puttinge = 1. If cI =c2 =O the os 
coincides with the LV system and the Frommer invariant is given by 

I = x Y ( ~ ~ +  biix-bzy).  
This is a particular case of the invariant I11 for LV systems [2] as the first constraint of 
(14) together with al+%=O implies RU=(al+ a2)bllbp-alb21bn-a2b12bll=0, which 
is the unique constraint required for this invariant. The general form has been 
obtained through the Carleman method as mentioned previously. 
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2.2. Inuariants of the type P a p  (Q) 
Similarly we can search invariants of the type 

4 x ,  Y )  = P(x, Y )  exp Q(x, Y )  
where P and Q are polynomials. Then the dynamical system satisfies 

and Fexp (Q) must be a polynomial. Assuming that P and Q are, respectively, of first 
and second degree 

P(x, y) = K + Ax + By 

Q(x, y )  = ax+&+ 6 x 2 + a y + q y 2  
(22) 

then Fexp(Q) can be taken constant (i.e.=l). Replacing in (21) the polynomial 
expressions (22), we obtain in a straightforward manner 

K= a:(ci/3ci/3 - b 
EP” = - b l J ~ ~ / 3 =  - bzlc;l3 

-113 3 
11c21 

a’ = c21 K 
j33 = - c, lK 
’1=p12 
6 = a212 
A=-aK 

B= -BK. 
Now ai +a2= 0 is still required and as can be seen from (23) we get 

However, two additional constraints among the coefficients must hold, namely 
bn= - (~3:’~ + b,) 

b2l=-(c~”c:/’+b,l). (25) 

In summary there are four relations among the coefficients, and we note that the PQ’ 
constraints (14) are fullfilled. 

Consider now 
P(x,  y) = K+&+ By+ Cx2+ Dry+ Ey2 

(26) 
Q(x, Y )  +BY 

then, the invariant coefficients satisfy 

1 - 3  

+ (4c,c2)’’3 
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a3=-2c21K 

B3 = 2cJK 

A = - a K  

B=-BK 

C = a 2 K / 2  

E=p2K/2  

D - aBK= ul = - u2 

with the constraint bltlb,= b211b12= - alp and the new ones 
b - c112$13 

(27) 
1 1 -  1 2 

bu = 4"~:". 
We see that the relations (14) are again satisfied. As a consequence we notice tha! 
both exponential invariant satisfy four conditions, i.e. one more that the invariant 
PQ'. However, all three conditions ((10) and (14)) of this invariant are satisfied by the 
exponential invariant meaning that this invariant belongs to the same family. One can 
see, in fact, that this increase in the number of constraints originates in a degeneracy 
of p, i.e. the full conditions (25) or (27) are obtained as limit cases. Let us consider 
first in (15) pu-* m .  We immediately see that then we fall on conditions (27). On the 
other hand, if we take p-0, we obtain directly the conditions (25). We can explain 
now the reason for the presence of the fourth constraint in the exponential invariant as 
p disappears; the number of unknowns is lowered by one. 

Returning again to the LV system (case cl = cz= 0), one can search for invariants of 
type (20). What results is the Volterra invariant [7] as a particular case of (20) with 
(26). In fact one can immediately show that the constraints are now (10) and 
bll = b,= 0 and the invariant is given by 

Z=xyexp(b,,x- b12y). (28) 

3. Invariants of the type PPR' 

Let us consider now an invariant of type (4), where P, Q, R are the following linear 
polynomials 

P= 1 + M + By 

Q = 1 +Ax + By (29) 
R =  1 + Cx+ D y .  

n e  equations (6) are 

dx ap aQ - + p ~ ~  -+ VPQ 
dr ay 

ap aQ 
dt ax ax 

-= ( QR 

-2= ( QR - + p m  - + ~ P Q  ax 
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with T = F p - l R V - l .  Then the QS will require T=constant. Here we must take a 
constant since all the polynomial P, Q, R begin with 1 as the constant term in 
contradiction to the preceding case. Another point of view is to divide all the a, and bii 
by this constant remembering that we still have nine constants at our disposal. From 
now the a, and b, wil be defined within a constant (the same for all coefficients). The 
result of equating (30) to (2)  is the following set of equations: first, the constant terms 
give 

B + p B +  vD=O (31) 
a +FA + vC= 0.  (32) 

B(C+A)+pB(a  + C )  + v D ( a + A )  = a ,  (33) 
a(D+ B )  + vC(B+ B)  +/A(@+ D) = -az.  (34) 

The linear diagonal terms contribute with 

The linear non-diagonal terms are 
a ( C + A ) + p A ( a +  C) +vC(a+A)=O 

B(D + B )  - vD(B+ B)  +pB(B+ D)=O. 

The terms on b,] and bz are, respectively 
apCB+PAC+apAD= b,, 
BvBC+ aBD+BpAD = - bz. 

The terms on c1 and c2 are, respectively 
P(1 + p + v)DB = c, 

a(1 +p + v)AC= -ez. 

(35) 
(36) 

(37) 

(38) 

Finally the terms on bl2 and b2, can be written 
B(BC+AD)+pB(DC+aD) +vD(BA + aB) =b12 
a(BC + AD)  + pA( BC + a D )  + vC( BA + aB) = - bZ1. 

(41) 

(42) 
The strategy to solve the system (31) to (42) is first to replace the values of a, B from 
(31) and (32). So doing, (35) and (36) transform to 

(vC+pA)Z+pA? + vcz= 0 (350) 
( p B +  v D ) ~ + ~ B ' +  vDz=O. (364  

As a consequence at least one of the invariant's exponents p or v is negative. 
Moreover the ratios BID and AIC satisfy the same quadratic equation. Let us call 

B A 
D c = p .  
- = m  

Then (33) and (34) can be written as 

a1 
Y(1+ Y )  = - - -- 

1 +p 2CD 

(43) 

( 3 3 4  

(344  
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giving again condition (10). Moreover m and p are the roots of the second-degree 
equations (35a) or (36a) which coincide. Hence we have 

+ v) 
1 +P P ( 1  +A' 
2v 

m + p =  -- mp=- 

We use (44) to simplify the left-hand sides of equations (41) and (42). Then one can 
see easily that these equations coincide with (35a) and (36a), leading to the con- 
straints 

b12=b2,=0. (45) 
The remaining equations transform to 

( 3 7 4  

( 3 8 4  

( 3 9 4  

( 4 0 4  

bii p2pv + pmp(1 + p )  +pv( l+  v) + m p v  = - - C D  

b, m'pv + mpp(1 + p )  + mv(1 + v )  +ppv=- CD2 

c2 
(1 +P + v) (PP + VlP =F 

CI 
(1 + p  + v) (pm + v)m = -- D" 

One can eliminate from these the quotient CID and obtain an equation which, 
together with (U), will lead to v = @(p) .  Then (33a), (37a) and (380) will determine v, 
C and D and the problem is solved, although the formulation is rather cumbersome. 
Note that here the number of knowns was eight and the number of equations is 
reduced to eleven as pointed out before. This is consistent with the number of 
constraints found which is three. 

The phase portrait of one example of this invariant is presented in figure 2. The 
main characteristics are the existence of trajectories defining a triangle joining the 
three equilibrium points which are not the origin. In contrast with the PQ" case, here 
there is no centre. Assuming the existence of four real equilibrium points, figure 2 
could be described as follows. At equilibria, equations (30) become 

ap  aQ aR 
ay ay ay 
a p  aQ aR 

ax ax 

QR - +pPR-+  vPQ -= 0 

QR +pPR -+ vPQ - = 0 

or, equivalently, 

Thus at equilibria either P=O or the term in the brackets must cancel. The case for 
which this last assumption is true gives R =  Q after taking into account the definitions 
(29) in the derivatives and using (31) and (32). The relation R= Q, when substituted 
into (46),  leads to the origin and R = 0, hence Q = 0, as equilibria. Now the case P = 0 
as equilibrium along with R = 0 and Q = 0 produce three intersection points. Note that 
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(31), (32) and (43) imply that P=O, Q=O and R = 0 are not parallel lines. Thus their 
intesection must be three points. Also for P=O, I = O ,  for Q = O ,  1=0 or infinity 
(depending on the sign of p), and for R = 0, I = 0 or infinity (depending on the sign of 
v ) ,  hence the lines P =  0, Q = O  and R= 0 are trajectories of the system (2). Note that 
assuming m = p  would lead from (44) to 1 + p  + v=O and to the cancellation of all the 
QS coefficients. 

4. Connection between marginal stability and existence of an invariant 

After establishing the generality of invariant conditions (14), we examine the relations 
between invariant conditions and the nature of the equilibrium points. Let us call x,, 
yo the coordinates of an equilibrium point. These satisfy the equations 

Let us recall here that among the solutions that a linear system like (49) can have, 
there are those which are neither amplified nor dumped (marginal stable) wrrespond- 
ing to the case where the eigenvalues are purely imaginary (case of a centre). This 
implies that the sum of the eigenvalues is zero. We say that this is the condition for the 

‘‘ooT--7--- 

-1.00 -0.25 0.50 
x 

Figure 2. Phase portrait of a PQ#R” case: a,  = 1.634, a2= - 1.634. b,, =2.798, b,,= b2, = 
0, b,,=3.362. c, =0.5635. c2=0.37566. The invariant coefficients are A=0.333, B =  -2. 
C= 1.666. D = - 0.333. a = 1.4253,B = - 1.7816, p = -0,77408, v =  - 0.70036, 
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marginal stability. But under this definition we include the eigenvalues I and -I 
where I is real, i.e. the saddle points, which play the role of imaginary centers. This 
must be checked afterwards. For (49), the marginal stability condition can be written 

S=al+a2+(2b , ,+  bz l )xQ+(2bZ+ blZ)yQ=O. (50) 
We can ask then whether the marginal stability is a signature for the existence of an 
invariant. To answer this question we note first that the invariant constraint (lo), 
namely (I, + a2=0, forces the origin to satisfy S = 0. We are going to find now that for 
the invariants of the PQ" family only, the other two constraints lead to another 
marginaly stable equilibrium point. This is immediate for the Frommer case from 
inspection of constraints (19). For the general P@ invariant it is also true. Let k be 
the ratio appearing in (14) 

Consequently we can write bl,xo=kbnxQ, b2,xQ= kb12xo, c2(x:/yo) = k3c1x: / y~ .  Now 
taking into account (10) and adding the two equations (48) divided, respectively, by x, 
and y,, we obtain 

bz(Yo+kr,)  + b d Y o + b )  + xo,v~ ( ~ : + k ' d )  =o. (52) r9 
Now (52) indicates simply that there exist equilibrium points satisfying the relation 
yo+ kxQ=O. One of these being the origin, the other is obtained explicitly through the 
value of k from (51). The equation to be satisfied by this equilibrium point is 
(2bll + bz,)xQ+ (2b,+ blz)yo=O, which, with (IO), is the condition of marginal stabil- 
ity (50). Outside of the origin there will be another equilibrium point satifying 
condition (50) (point C of figure 1). This point will be saddle or centre depending on 
whether the eigenvalues for it are real or complex. Moreover, according to the 
theorem of Kukles and Casanova [SI reported by Coppel [9],  if the quadrilateral with 
vertices at the equilibrium points is convex, then there are two opposite saddles and so 
the two points considered before are two opposite vertices. If the quadrilateral is not 
convex then either the three exterior vertices are saddles and the interior is an 
antisaddle (nodes, foci or centres) or the exterior vertices are antisaddles and the 
interior is a saddle. Figure 1 is an example of this last case, the antisaddles being 
respectively a stable node (A), an unstable node (B) and acentre (C). The constraints 
(45) do not satisfy (50) in general and consequently for invariant PQpRv, only thc 
origin is marginaly stable. 

5. Conclusion 

The method used in this paper is based on the fact that a ZD system possessing a time- 
independent invariant can be put in a Hamiltonian form through rescaling, the 
Hamiltonian being the invariant. As in most working methods we must assume a 
certain form for the introduced invariant and we build the general equations of the 
systems having this invariant. We have an arbitrary function used to cancel difficult 
terms which would lead to systems of equations different from those we intend to 
study. This method plays, for the os, the role of the term xayp  which we previously 
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introduced in the LV system using then the extended Carleman method (which does 
not work in the as case). As a matter of fact the type I11 invariant that we found in the 
LV system is the counterpart of the invariant of the form P Q W  studied in section 3. In 
this last case P = Q = R = 0 describes three sides of the triangle formed by the three 
equilibrium points excluding the origin. In the same way for LV invariants of type 
xayaP(x, y) where P is a first-degree polynomial, x = y = P = 0 describes the three sides 
of the triangle formed by the origin and two equilibrium points on the coordinate 
axes. As a consequence we can forecast for the as other invariants built on other 
triangles. To obtain them we must omit the constant term 1 in the assumed form of Q 
and R introduced in section 3. It will give a small new result but in the ‘invariant 
fishing’ business one should be patient and accept little fishes! 

We next consider what other generalizations are in store. For the moment we see 
two roads. The first is the study of time-dependent invariants. In fact the search for an 
invariant of the form l ( x ,  y, t )  = J ( x ,  y) exp (sf) can be associated with the search for 
explicitly time-independent invariant J(x , y )  if we have a,  =a2. This explains the type 
I1 family found for the LV system. Generalization to higher order polynomials will 
probably be easy. 

The relation q = a 2  is interesting. In fact we know that for the QS, without any 
further constraint, a rescaling method leads to a solution through a cascade of 
quadratures (see append=). In our opinion this clearly indicates that the problem in 
searching for an invariant is not so much their existence but the explicit form that we 
are seeking for them. These results will be published latter. 

The second-and more exciting question-is the generalization to a higher 
dimension. The first step is, of course, to a 3~ system. As the number of equations is 
odd no Hamiltonian can be exhibited. However, one can write the general form of the 
equations for a system having an invariant l (x ,  y, z )  using three arbitrary functions. 
For higher dimensions we face the problem of too many constraints when we assume a 
given form for the invariant. Of course too many constraints take out the usefulness of 
the invariant. 

Since we have now a good knowledge of the invariants for both the ZD LV and QS, it 
will be interesting to compare with the Painlev6 method. What comparison can be 
made between the cases given by this method and the ones given by Painlev&? Does 
the Painlev6 method point out cases not given by the Carleman or the Hamiltonian 
schemes? What is the form of the invariants where Painleve indicates there is one- 
and when has it been found by the methods we proposed? 

Symmetry of a system, existence of invariants, integrability are different-but 
intimately connected-concepts. Exhaustive and systemtaic studies of the few systems 
where it is possible are crucial for a clear understanding of these topics. This paper is a 
contribution to this task. 

Appendix. Integrability of n-homogeneous polynomial systems in ZD 

Let us consider the system 
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where f ( x ,  y) and g(x, y) are homogeneous polynomials of degee n, which includes 
the qs (2) as the particular case n = 2. Assume moreover that 

a,=a,. (A21 
Then we can apply to this system a rescaling similar to the one introduced by 
Coste-Peyraud-Coullet [lo]. This allows us to obtain the solution of (Al) in an 
elegant manner. 

Theorem. If a l = a 2 = a  one can solve the n-degree polynomial ODE (Al) by the 
following rescaling 

x = W E ,  Y = A(t)E2 d6=pdt  (A31 

Proof. It is easy to see that system (Al) with condition (A2) transforms under the 
rescaling (A3) in 

where X=dl/dt. Take 
p =A"-' 

and introduce 
an-,i 

K(6) 5- A" 
which we transform to a differential equation in I (6)  (i.e. A expressed as a function of 
the new time 0) 

dl -+ K(6)A=a,i1-". 
d6 

Then (A4) may be written 

We can make a choice of K(6) such that d ~ 2 / d 6 = 0 .  Under these conditions we have 
&= C. If El is known, so is K(0). We can set the constant equal to unity without any 
loss of generality, as can be shown easily. Then from the second of equations (A7) 

w e ) =  - g ( w  

and the first of (A7) can be written 
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where the variables separate and, consequently, the solution is reduced to a quadra- 
ture. The knowledge of t, can then be used to obtain 1 through (A6). Put 

1(O)=A(e) e-+(''. (-4% 

One has 

which integrates as 

A =  a(n-  

where we have introduced the value A. of 1 at t=  0 = 0 (the two times coincide at the 
origin). The value of p is then 

The problem is then reduced to a sequence of quadratures, the last being the one 
which establish the correspondence t=8 through (A3). 

The unusual character of this rescaling must be pointed out. Note that here we 
introduce the scales I and p (for x and time) and solve the new variable (although we 
ignore these scales). The important property is that this choice allows one to eliminate 
formally the second dependent variable. The possibility of obtaining the equation for 
the scale from the solution E, (@)  is given by the fact that in (A7) it is the same K(0)  
which appears-with the only condition a ,  =a2. Moreover, the subsequent equation 
(A6) although nonlinear can be solved (in contrast with many problems where the 
difficulties eliminated in the beginning reappear in the last step!). This interesting 
property of ZD systems was also apparent in LV equations [Z], where indeed an 
invariant was obtained for a, =a2. 
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